Telegram Group & Telegram Channel
На собесах любят спрашивать, что такое градиентный бустинг и причём здесь градиент.

Градиентный бустинг — это ансамблевый метод, то есть он комбинирует предсказания нескольких базовых моделей. В данном случае эти базовые модели (чаще всего деревья) строятся последовательно, и каждая новая учится исправлять ошибки предыдущих.

Всё начинается с простого предсказания начальной моделью целевой переменной. Затем вычисляется значение функции потерь (loss). Допустим, что предсказание первой модели на 5 больше настоящего значения. Если бы следующая новая модель выдавала ответ -5, то сумма ответов этих двух моделей оказалась бы идеальной. В реальности моделей может быть сколько угодно — строим до тех пор, пока не получим приемлемый результат.

Каждый очередной алгоритм в градиентном бустинге будет обучаться предсказывать отрицательный градиент (или антиградиент) функции потерь на основе предсказания предыдущей модели. Это позволяет обобщить метод на любую дифференцируемую функцию потерь. Конечным результатом будет взвешенная сумма результатов всех моделей.



tg-me.com/ds_interview_lib/90
Create:
Last Update:

На собесах любят спрашивать, что такое градиентный бустинг и причём здесь градиент.

Градиентный бустинг — это ансамблевый метод, то есть он комбинирует предсказания нескольких базовых моделей. В данном случае эти базовые модели (чаще всего деревья) строятся последовательно, и каждая новая учится исправлять ошибки предыдущих.

Всё начинается с простого предсказания начальной моделью целевой переменной. Затем вычисляется значение функции потерь (loss). Допустим, что предсказание первой модели на 5 больше настоящего значения. Если бы следующая новая модель выдавала ответ -5, то сумма ответов этих двух моделей оказалась бы идеальной. В реальности моделей может быть сколько угодно — строим до тех пор, пока не получим приемлемый результат.

Каждый очередной алгоритм в градиентном бустинге будет обучаться предсказывать отрицательный градиент (или антиградиент) функции потерь на основе предсказания предыдущей модели. Это позволяет обобщить метод на любую дифференцируемую функцию потерь. Конечным результатом будет взвешенная сумма результатов всех моделей.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/90

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA